
Python Programming
Introduction

Rabii El Ghorfi

Copyright : University of Pennsylvania

EMSI
3IIR

School Year
2014-2015

Introduction

What is Python?

I Compromise between shell script and C++/Java program

I Intuitive syntax

I Interpreted (sort of)

I Dynamically typed

I High-level datatypes

I Module system

I Just plain awesome

Introduction

Java

public class Hello {

public static void main(String[] args) {

System.out.println("Hello, world!");

}

}

Introduction

C++

#include <iostream>

int main()

{

std::cout << "Hello World!" << std::endl;

return 0;

}

Introduction

Python

print "hello world"

Python

I What does it mean for a language to be “interpreted?”

I Trick question – “interpreted” and “compiled” refer to
implementations, not languages

I The most common Python implementation (CPython) is a
mix of both

I Compiles source code to byte code (.pyc files)
I Then interprets the byte code directly, executing as it goes
I No need to compile to machine language
I Essentially, source code can be run directly

Python

How do you use it?

I Write code interactively in the interpreter

I Run a file in the interpreter with import file

I Run a file on the command line with python file.py

Basics

>>> 1 + 1

2

>>> print "hello world"

hello world

>>> x = 1

>>> y = 2

>>> x + y

3

>>> print x

1

Types

What does “dynamically typed” mean?

Types

What does “dynamically typed” mean?

I Variable types are not declared

I Python figures the types out at runtime

Types

I type function:

>>> type(x)

<type 'int'>

I isinstance function:

>>> isinstance(x, int)

True

I Difference?

Types

We prefer to use “duck typing.”

“When I see a bird that walks like a duck and swims like a
duck and quacks like a duck, I call that bird a duck.”

— James Whitcomb Riley

try:

assume object has desired type

except:

try something else

Types

What does “strongly typed” mean?

Types

>>> x = 3

>>> x = "hello"

I Has x changed type?

I No – x is a name that points to an object

I First we make an integer object with the value 3 and bind the
name ’x’ to it

I Then we make a string object with the value hello, and rebind
the name ’x’ to it

I Objects do not change type

Types

Interpreter keeps track of all types and doesn’t allow you to do
things that are incompatible with that type:

>>> "hi" + 5

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: cannot concatenate 'str' and 'int' objects

Functions

def add(x,y):

return x + y

>>> add(3,4)

7

I Colon (:) indicates start of a block

I Following lines are indented

Types in Functions

I Function declaration doesn’t specify return type

I But all functions return a value (None if not specified)

I Parameter datatypes are not specified either

Style

I Blocks are denoted by whitespace

I Use spaces, not tabs

I Single line comments are denoted with # ...

I Multi-line comments are denoted with """ ... """

I Variable and function names should be lower case with
underscores separating words

I Use docstrings to document what a function does:

def add(x,y):

""" Adds two numbers """

return x + y

Blocks in the Interpreter

>>> def add(x,y):

... return x + y

...

>>>

I ... indicates more input is expected

I Need blank line to indicate end of block

Datatypes: Overview

I None

I Booleans (True, False)

I Integers, Floats
I Sequences

I Lists
I Tuples
I Strings
I Dictionaries

I Classes and class instances

I Modules and packages

Booleans

I Booleans: True, False
I The following act like False:

I None
I 0
I Empty sequences

I Everything else acts like True

Booleans: Operations

I and, or both return one of their operands

I and, or are short-circuit operators

Booleans: Examples

>>> (2 + 4) or False

6

>>> not True

False

>>> not 0

True

>>> 0 and 2

0

>>> True and 7

7

Integers and Floats

I Numeric operators: + - * / % **

I No i++ or ++i, but we do have += and -=

I Ints vs. Floats

>>> int(5/2)
2

>>> 5/2.

2.5

>>> float(5)/2

2.5

>>> int(5.2)

5

Assignments

>>> a = b = 0

>>> a, b = 3, 5

Something cool:

>>> a, b = b, a

>>> a

5

>>> b

3

Comparisons

>>> 5 == 5

True

>>> "hello" == "hello"

True

>>> 1 != 2

True

>>> 5 > 3

True

>>> "b" > "a"

True

If Statements

if a == 0:

print "a is 0"

elif a == 1:

print "a is 1"

else:

print "a is something else"

If Statements

I Don’t need the elif or else

I Condition can be any value, not just Boolean

if 5:

print "hello"

if "hello":

print 5

For Loops

>>> range(5)

[0, 1, 2, 3, 4]

>>> for i in range(5):

... print (i)

...

0

1

2

3

4

Ranges

I range(n) produces [0, 1, ..., n-1]

I range(i, j) produces [i, i+1, ..., j-1]

I range(i, j, k) produces [i, i+k, ..., m]

>>> range(5, 25, 3)

[5, 8, 11, 14, 17, 20, 23]

Break and Continue

>>> for i in range(5):

... print i

... if i < 3:

... continue

... break

...

0

1

2

3

While Loops

>>> i = 0

>>> while i <= 3:

... print i

... i += 1

...

0

1

2

3

Example: Factorial Function

5! = 5*4*3*2*1

0! = 1

Iterative Factorial Function

def factorial(x):

Iterative Factorial Function

def factorial(x):

ans = 1

for i in range(2, x+1):

ans = ans * i

return ans

Recursive Factorial Function

def factorial(x):

Recursive Factorial Function

def factorial(x):

if x == 0:

return 1

else:

return x * factorial(x - 1)

Imports

>>> import math

>>> math.sqrt(9)

3.0

Python Files

import <>

def <>:

...

def <>:

...

def main():

...

if __name__ == "__main__":

main()

Python Files

I name is a variable that evaluates to the name of the
current module

I

I

e.g. if your file is h1.py, name = ‘‘h1’’

But if your code is being run directly, via python h1.py,
then name = ‘‘ main ’’

Running Python Files

I

I In command line:

In the IDLE:

I File open hello.py

I Run module F5

I python hello.py

